Land market & Genedec

Pierre-Alain Jayet jayet@grignon.inra.fr Unité Mixte de Recherche INRA-INA en Economie Publique – BP01 Centre INRA Versailles-Grignon 78850 Thiverval-Grignon - F

With contributions by Elodie Debove (INRA) Werner Kleinhanss, Bernd Küpker (FAL) Lucinio Judez (UPM) Anastasios Xepapadeas (IESL)

> DG Agriculture – Bruxelles 5 March 2007

Overview

- 1. Land market, land prices, shadow prices of agricultural land
- 2. Change in CAP and change in shadow prices
- 3. Spatial range of shadow prices
- 4. Other elements implied in the change of the price

Agricultural land market (generally submitted to destination restrictions)

05 March 2007

Land price and (yearly) rental price

 $p = \lim_{T \to \infty} r \sum_{t=1,T} 1/(1+d)^t = r / d$

Gross margin and shadow costs of fixed factors

Duality theory :

optimal gross margin of the farm

= sum of optimal marketed net-puts valued by market prices= sum of resources valued by optimal dual prices

From CAP change to land market

Let us focus now on the shadow price λ

Change in CAP

Some elements about the CAP change from the Agenda 2000 to the Luxembourg agreement :

- partial or total abolition of direct subsidies (partial mainly FR, ES, ...)
- single farm payement related to eligible areas (SAP-SFP)
- set-aside requirement maintained
- incentives for pastures through differentiated SAP (DE)
- farm level / regional level SAP-SFP
- historic / dynamic SAP-SFP

CAP change in mathematical programming models

Shadow prices, rental values, land rental market

• MIP-LP (i.e. AROPAj):

o Dual values of land equation are used as indicator for rental land values; Transfer of land between farm groups not considered (but could be).

• PMP:

o Dual values of land equation are used as indicator for rental land values (i.e. PROMAPA.G)

o Equilibrium rental prices derived from landexchange equation between farm groups are used (EU-FARMIS)

The shadow price related to the land (LP)

Let us assume that *SAU* is the total eligible area.

Let us consider the enveloppe of the different decoupling policies.

The farmer's programme could be summarized by:

 $\begin{array}{ll} \max_{x,s} q \cdot x - c \cdot s + d \, SAU \ (+ F) & (\text{lump sum transfer F}) \\ \text{s.t.} & \sum_{j=1,J} s_j \leq SAU & (\sigma) & \text{ (lump sum transfer F}) \\ & \sum_{k=1,K} x_k \leq SAU & (\tau) & \text{ (CAP constraint GDL5 } \\ & \text{ other constraints} & \end{array}$

Generally (taking account the binding status of constaints, the mix-variable problem), the enveloppe theorem leads us to :

$$\lambda = \sigma + \tau + \mathsf{d}$$

Average MS shadow prices (AROPAj)

MS	Gross margin			Subsidies			Shadow price of land		
	AG15	LX15	FD15	AG15	LX15	FD15	AG15	LX15	FD15
belg	641	648	670	288	288	299	932	1011	1060
dani	810	813	833	320	320	322	782	868	859
deut	1126	1189	1148	321	373	320	762	922	852
ella	2136	2111	2113	655	614	614	1180	1526	1538
espa	615	613	628	306	299	303	632	672	734
fran	801	801	833	324	313	326	621	673	752
gbre	781	794	802	265	265	265	569	748	734
irla	647	651	653	294	284	284	554	656	637
ital	2349	2359	2370	357	355	355	792	883	884
luxe	958	985	999	270	272	272	492	623	628
nede	3748	3764	3768	297	296	297	3677	3805	3606
osto	1001	1012	1025	324	323	325	741	782	856
port	890	905	927	249	245	248	735	817	854
\mathbf{suom}	840	840	845	204	199	199	398	480	493
sver	766	778	789	225	222	221	479	551	557
EU15	1025	1039	1047	311	315	310	712	811	827

Comparison between gross margin per ha, subsidy per ha and shadow
price of land for the 3 CAP scenarios (€/ha) : "Agenda 2000" (AG15),
"Luxembourg agreement" (LX15) and "full decoupling" (FD15).
In the 3 scenarios, livestock adjustment is allowed and limited to a
range of +/-15%.

	1	LX15	FD15			
$_{\rm MS}$	land	set-aside	land	subsidy		
belg	812	198	761	299		
dani	545	323	537	322		
deut	540	382	532	320		
ella	902	623	924	614		
espa	489	184	431	303		
fran	470	203	426	326		
gbre	482	265	469	265		
irla	373	283	353	284		
ital	521	362	529	355		
luxe	351	272	356	272		
\mathbf{nede}	3522	283	3309	297		
osto	533	249	531	325		
port	657	160	606	248		
suom	261	203	294	199		
sver	328	223	336	221		
UE15	548	267	517	310		

Contribution of the land allocation constraint and the set-aside constraint (Luxembourg agreement) or the single area payment (full decoupling) to the shadow price of land (€/ha).

Average EU-15 shadow price (AROPAj)

Contribution of the surface constraint and the CAP rules explicitly linked with the total land area at the farmer's disposal to gross margin (results provided by the AROPAj model for 3 CAP options; 28 farm-groups for which GAMS does not provide the dual solution are excluded from the estimate.)

Average EU-15 shadow price (AROPAj)

Change in gross margin and shadow price when CAP changes:

- Global internal profitability (max gross margin when support is maintained subject to less constraints) => increasing gross margin => increasing value of binding resources (i.e. land) (π)
- Support moving from a large range of direct subsidies (crops AND animals) toward the land mainly => increasing value of the land (s.t. eligibility) $(\sigma + \tau + d)$
- In the same time the value only related to the land resource except the CAP payment is decreasing (σ)

EU-FARMIS (1)

National Implementation in Germany

- Unified premiums levels in each region
- Premium captured in shadow values
- shadow values increase especially for grassland

Historical Implementation

- Farm individual premium levels
- Premiums captured in the value of entitlements
- Lower shadow values
- Effect over-estimated in EU-FARMIS

EU-FARMIS (2)

Differences between AROPAj and EU-FARMIS

• Methodological (CAP stylization)

o Transferability rules and land exchange between farm groups in EU-FARMIS (rental price equilibrium)

o Non-eligible lands existing in EU-FARMIS

• Technical (farming)

o Split of the land between arable lands and grasslands

o Wider range of productions in EU-FARMIS (wine, ...)

• Mathematical

o PMP (EU-FARMIS) vs MIP-LP (AROPAj)

PROMAPA.G (1)

	Dual value of non		Dual	value and entit	in non irrigated land		
	irrigated land (€)	Type of	Entitlement(E)	Dual		Dual+Entitlement	
	in base year 2002	decoupling		Value (€)	Var %	Value (€)	Var %
AGGREGATED	211 74	PARTIAL	146,92	41,66	-80,32	188,58	-10,94
RESULTS	211,74	FULL	187,93	28,50	-86,54	216,43	2,21
	643,78	PARTIAL	238,99	349,99	-45,64	588,98	-8,51
04 BASQUE COUNTRT		FULL	298,03	285,65	-55,63	583,68	-9,34
	441,35	PARTIAL	156,96	243,68	-44,79	400,64	-9,22
UJ NAVARRE		FULL	201,31	200,28	-54,62	401,59	-9,01
	162,3	PARTIAL	130,04	7,67	-95,27	137,71	-15,15
UT ARAGON		FULL	167,86	0,00	-100,00	167,86	3,43
	375,86	PARTIAL	184,33	168,62	-55,14	352,95	-6,10
UO CATALONIA		FULL	238,00	122,24	-67,48	360,24	-4,16
10 CASTILE and LEON	156,71	PARTIAL	140,72	0,00	-100,00	140,72	-10,20
TO CASTILE and LEON		FULL	177,75	0,00	-100,00	177,75	13,43
	448,02	PARTIAL	151,40	301,17	-32,78	452,57	1,02
		FULL	195,53	269,74	-39,79	465,27	3,85
	222,03	PARTIAL	124,29	71,59	-67,76	195,88	-11,78
12 CASTILE-LA MANCHA		FULL	160,18	40,11	-81,93	200,29	-9,79
	122,31	PARTIAL	154,30	0,00	-100,00	154,30	26,15
15 EXTREMADURA		FULL	200,05	0,00	-100,00	200,05	63,56
	242,99	PARTIAL	220,56	0,00	-100,00	220,56	-9,23
TO ANDALUSIA		FULL	287,77	0,00	-100,00	287,77	18,43
Var (%)= Percenta	ge of variation of the	e value with rep	pect to the dua	I value of the b	ase year		

PROMAPA.G (2)

• The PROMAPA.G model generates two land value indicators: the dual land value and the entitlement payment per hectare. The dual value relates to the revenue per ha of cultivated crops (including only coupled direct payments) while the entitlement payment corresponds to the decoupled payments per eligible ha.

• With increasing degrees of decoupling the dual values will decrease while the entitlement payment per ha will increase.

• The Table refers to non irrigated land values, using data from average TF 1310 – specialist cereals (other than rice), oilseed and protein crops – in different Spanish NUTS II where this TF is conducted. The simulation results are obtained with PROMAPA.G assuming constant base year prices for full and partial decoupling scenarios.

• To compare the dual values of land in the base year (when all direct payments are coupled) with land value in decoupled scenarios (partial and full) entitlement payment per ha must be taken into account and added to the dual values obtained

Regional increase in the shadow price of land when the CAP is evaluated according to the LX15 or the FD15 scenario (\in /ha).

LX15 compared to AG00

LX15 compared to AG00

FD15 compared to AG00

Regional increase in the shadow price of land when the CAP is evaluated according to the LX15 or the FD15 scenario (% of the AG00 regional shadow price).

22/25

Change due to environmental policies

Cross-compliance CAP measures and future environmental policies should impact on the value of the land, taking account

- point source pollution problem
- non-point source pollution problem

(NPS problem possibly transformed in PS problem through « maximum entropy method » developed by one Genedec partner under data requirements: <u>http://www.grignon.inra.fr/economie-publique/genedec/publi/deliv/WP5_D8.pdf</u>)

A tougher regulation implied by the knowledge of individual emissions, might reduce in the short run the private economic profitability. In the long run however, one might expect that the overall improvement of the quality of (i.e. water) resources will improve social profitability in a given area, but also private profitability if land prices embody environmental factors as in hedonic price equations.

Change due to environmental policies

The Agenda 2000 CAP reform is expected to promote environmental integration into the communal agricultural policy. In order to maximize environmental benefits, both direct payments and pillar II measures are set under the principle of cross-compliance, a sanctioning approach incorporated into the horizontal regulation that involves penalties for environmental infringements entailing when appropriate, either partial or full removal of aid in the event of deviation from certain farming standards (EC, 1999). Furthermore, under the 2003 CAP reform if a farmer fails to comply with standards due to negligence then the reduction of payments varies between 5% and 15%, while payments are reduced by at least 20% and may also be completely withdrawn in the event of deliberate non-compliance.

If the transformation of NPS agricultural pollution problem to a PS problem allows adequate observability of individual emissions, then the environmental quality constraint, implied by Agenda 2000 can be transformed into constraints on inputs (water, fertilizers) and possibly on land. When these constraints are introduced into the mathematical programming models, the multipliers associated with the constraints, will provide additional shadow values which embody environmental considerations, and which can be used to adjust the shadow price related to land.

Caveats

Key points when analysing the link between shadow prices of land delivered by farm models and lank market :

- transferability of payments should be taken into account
- anticipation of future change (CAP and environmental policies, economic environment – i.e. energy price)
- taking account the non-food agricultural products and policies (bio-energy and related incentives)
- competition with non agricultural uses of the land