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ABSTRACT 
 

In this paper, we report some results of a recent collaboration aimed to develop 
low cost and non-destructive methods for characterizing spatial variations of soil 
components. Producing accurate maps from soil sampling involves high field 
measurements density, thus finally becomes expensive wi thout a satisfactory 
geospatial resolution. In this study, the feasibility of coupling an electromagnetic 
inductance EMI sensor (Geonics EM38©), a high precision GPS RTK, and 
surface radiometric data to map field variability was investigated. EM38 and GPS 
are mounted on 2x4 quad and a digital camera is put on a Unhumaned Aerial 
Vehicle UAV (radio controlled). EMI measurements are continuously taken at 
two depths with a 5 meters grid sampling. Based on these data sets, we 
investigated the possibilities to pr edict soil properties (physical, chemical, and 
physico-chemical). For this purpose, we tested two kinds of predictive models: 
linear regression and artificial neural network. Each type of predictive model has 
been fitted on calibration data and applied on validation data in order to test the 
resolution and accuracy of prediction. Several kinds of soil types have been 
considered (clayey, silt -laden, sandy). Neural network predictive models are 
suitable for this problem and good results are obtained for predi cting texture 
parameters, some chemical components (CaO, K 2O), organic matter and pH. 
Correlation coefficients between predicted and real test data vary between 0.7 and 
0.9, which is better than usual approaches (linear model with only one kind of 
source data): the innovative coupling process between GPS, EMI and radiometric 
data revealed to be very efficient. To make the method operational, the number of 
soil sampling needed for the learning process is then minimized. We propose a 
methodology for optimizin g soil data collection based on an unsupervised 
classification of EMI, GPS and radiometric data. It has been assessed that 4 soil 
samplings per field appear to be sufficient to fit a good predictive neural network 
model. Finally, high spatial resolution so il properties maps are generated.  
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INTRODUCTION 
 
The knowledge of spatial variability of soil components is critical to implement 
an efficient precision farming program. To generate accurate maps from soil 
sampling usually require intense field measurements, which is rarely cost effecive 
and deliver a non-continuous set of data. Then this set of data usually require 
heroic assumptions to use a krigging met hod that will then deliver a geospatially 
distributed variable Several papers deal with the variability mapping with non -
destructive methods: yield sensors [Layrol et al., 2000], remote sensing [Dicker et 
al., 1999] [Varvel et al., 1999], radar images [Moran et al., 1999] or geophysical 
sensors [Dabas et al., 2000] [Nemdhal et al., 2001] [Sudduth et al., 1999]. In this 
paper we propose an innovative method to quantify variability of soil 
components. This method is based on artificial  neural network (ANN) models. 
ANN models are well adapted for modeling non -linear behaviors. In this study, 
the feasibility of coupling an electromagnetic conductivity EMI sensor (Geonics 
EM38©), a high precision GPS RTK and surface radiometric data to map field 
variability is also investigated.  
The paper is divided into 4 main parts. After a brief presentation of materials and 
recall of the objective, the second part introduces the theory behind artificial 
neural network models. The third part presents applications of neural net works on 
our data set and results. In addition, a comparison is made with linear regression. 
Then, in the fourth part, commercial or operational use of this method is 
introduced. 
 
 

MATERIALS AND OBJECTIVE  
 
Field trials were conducted at several locations i n France and Spain and for 
different types of soil: clayey, silt -laden, sandy. The different experiment fields 
are illustrated and briefly described on figure 1.  
 
1 Gaillac: limestone, various texture  
2 Ondes: sandy and/or clayey 
alluvium 
3 Auzeville: clay and limestone, 
deep soil 
4 Baziège: clay and limestone, deep 
soil 
5 Calmont: stony soil, alluvium  
6 Bellvis: clay and limestone, not 
stony 
7 Vallmanya: clay and limestone, 
stony  

 

 
 

 
 
Sites have been chosen in order to consider various kind of soil. D ata (non 
destructive data and soil sampling) have been collected just before planting on 
each field (i.e. corresponding to bare soil conditions).  

Fig. 1 : Overview of sites location.  



EM38 and GPS were mounted on a 2x4 quad, and a digital camera installed on a 
Unmanned Aerial Vehicle UAV (radi o controlled equipment) as illustrated on 
figure 2. 
 

 

 
 

Fig. 2 : EMI EM38 sensor mounted on a 2x4 quad (fig. 2a) and UAV (radio controlled) 
used for taking spectral image of the fields (fig 2b).  

 
- EMI measurements were continuously taken at two depths wit h a 5 meters 

grid sampling, with the EM38 sensor developed by the Geonics society.  
- A digital camera was mounted on an UAV. The UAV was piloted with the 

help of a navigation software, based on video parameters and GPS location 
transmissions on a digital ma p (see Fig 3). This software has been developed 
by GEOSYS. 

 
 

Fig. 3 : View of the help UAV navigation software developed by Geosys . 
 
- Topography of each site has been done in collaboration with Toposat. We 

used for this a Real Time Kinematic RTK GPS receiv er with a less than 1 cm 
accuracy for both X (longitude), Y (latitude) and Z (elevation).  

- A grid sampling over the field was also done with a density of 13 points per 
hectare at two depths (10 -30cm, 60-80 cm). 

 
As a prerequisite, the entire dataset was geo -referenced and “cleaned” by 
removing outliers. Based on these data sets, we investigated the possibilities to 
predict soil properties (physical, chemical, and physico -chemical) from these non -
destructive data as summarized in figure 4.  
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ARTIFICIAL NEURAL NETWORKS: THEORY  
 
This part aims to give to the reader notions about Artificial Neural Networks. For 
more explanation, a lot of books and paper are available on this subject [Kröse et 
al., 1993][Hornik et al, 1989].  

Glossary 
The basic computational  element (model neuron) is often called a node or unit. It 
receives input from some other units, or perhaps from an external source. Each 
input has an associated weight w, which can be modified so as to model synaptic 
learning. The unit computes some funct ion f of the weighted sum of its inputs:  

 
(1) 

Its output, in turn, can serve as input to other units.  

 
Fig. 5 : Schematic representation of a neuron.  

 
• The weighted sum ∑ j iij yω  is called the net input to unit i, often written 

neti.  
• Note that w ij refers to the weight from unit j to unit i (not the other way 

around).  
• The function f is the unit's activation function. In the sim plest case, f is the 

identity function, and the unit's output is just its net input. This is called a 
linear unit.  

Fig. 4 : Scheme of the study.  



The loss function  
In order to make precise what we mean by being a "good predictor", we define a 
loss (also called objective or error) funct ion E over the model parameters. A 
popular choice for E is the sum-squared error:  

 
(2) 

In words, it is the sum over all points i in our data set of the squared difference 
between the target value ti and the model's prediction yi, calculated from the input 
value xi. For a linear model: y = w1 x + w0 with slope w1 and intercept w0, the 
sum-squared error is a quadratic function of the model parameters.  

Minimizing the loss:  
The loss function E provides us with an objective measure of predictive error for a 
specific choice of model parameters. We can thus reformulate our goal of finding 
the best model as finding the values for the model parameters that minimize E.  
For linear models, linear regression provides a direct way to compute these 
optimal model param eters. However, this analytical approach does not generalize 
to nonlinear models. Even though the solution cannot be calculated explicitly in 
that case, the problem can still be solved by an iterative numerical technique 
called gradient descent. It works a s follows:  

1. Choose some (random) initial values for the model parameters.  
2. Calculate the gradient G of the error function with respect to each model 

parameter.  
3. Change the model parameters so that we move a short distance in the 

direction of the greatest r ate of decrease of the error, i.e., in the direction 
of -G.  

4. Repeat steps 2 and 3 until G gets close to zero.  

Multiple regression  
We may want to predict more than one variable from the data that we're given. 
This can easily be accommodated by adding more output units (Fig. 6). The loss 
function for a network with multiple outputs is obtained simply by adding the loss 
for each output unit together. The network now has a typical layered structure: a 
layer of input units (and the bias), connected by a layer o f weights to a layer of 
output units.  

  
Fig. 6 : Schematic representation of a multiple regression in an ANN model.  

 
Multi-layers networks for nonlinear problems  
Consider again the case of non -linear model fitting the experimental data:  we can 
enable our neural network to do such curve fitting by giving it an additional node 



with a suitably curved (nonlinear) activation function. A useful function for this 
purpose is the S-shaped hyperbolic tangent (tanh) function (Fig. 7).  

  
Fig. 7 : Schematic rep resentation of a hyperbolic tanget function and a hidden layer in a 

ANN model..  
 
Fig. 7 shows a new network: an extra node (right) with the tanh activation 
function (left) inserted between input and output.  
Since such a node is "hidden" inside the network , it is commonly called a hidden  
unit. Note that the hidden unit also has a weight from the bias unit. More complex 
models can be then built in order to simulate complex behaviors between input 
and output (figure 8).  

 
Fig. 8 : Schematic representation of a complex ANN model with hiddden layers.  

 
Backpropagation 
We have already seen how to train linear networks by gradient descent. In trying 
to do the same for multi -layer networks we encounter a difficulty: we don't hav e 
any target values for the hidden units. This seems to be an insurmountable 
problem - how could we tell the hidden units just what to do? This unsolved 
question was in fact the reason why neural networks fell out of favor after an 
initial period of high popularity in the 1950s. It took 30 years before the error  
backpropagation (or in short: backprop) algorithm popularized a way to train 
hidden units, leading to a new wave of neural network research and applications. 
This algorithm is explained in details i n [Kröse et al, 1993].  

 
 

APPLICATION AND RESULTS  
 
We divided our data set into two parts: a learning data set (2/3) and a validation 
data set (1/3) as commonly done [Lin and Wang, 2000].  
We made the scientific choice to use a backpropagation algorithm wh ich has been 
applied with success in several scientific domains  [Yang et al. 1997]  [Fourty 
1996] [Rummelhart et al. 1986] and a single hidden level [Kröse and Van der 
Smagt, 1993]. The activation function has been chosen as a hyperbolic tangent 



(tanh) function. Also, we have chosen the Nguyen -Widrow method for the 
initialization of weights and biases.  
We used Matlab software  and its neural network toolbox  for implementation. The 
different tested models have been applied on all input configurations (EMI, E MI 
+ microtopography, spectral image+EMI…) and for all desired outputs (chemical, 
physical, physico-chemical). Different results are presented:  
• selection of the best input configuration ,  
• comparison with linear models,  
• universality of the obtained models.  
 
Input data configuration  
For each point (learning and validation) we have several parameters: 
electromagnetic inductance  at two depths, microtopography, and spectral 
information over the surface.  We tried all configurations on the input parameters 
in order to determine where is the most relevant information. The following charts 
depicts results for the clay content parameter. Each diagram on figure 9 represents 
the relation between measured and predicted values (using ANN) for the two data 
sets: learning (in red) and validation (in blue). Correlation coefficients and best 
linear fit equation between predicted and real values are also displayed.  
 

EMI (two depths)  EMI + spectral image  

EMI + microtopography  EMI+spectral image + microtopog raphy 
 

Fig. 9 : Result of clay content prediction with ANN models and for diff erent input 
configurations. Results over the Auzeville site, France . 
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The data presented on figure 9 shows the efficiency of a multi -sensor approach to 
model clay content. Similar results have been obtained for all of the predicted 
parameters. The Figure 10 presents the correlation for all the variables at two 
depths (10-30 cm and 60-80 cm) when data in input are EMI, spectral image of 
the surface and microtopography.  
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Fig. 10: Accuracy of prediction (R value) with ANN models for all variables at two 

depths.Input data  : EMI, spectral data and topography.Values are  means over all sites  
 
Coments : 
• Very good prediction of texture parameters (clay, sand, alluvium)  
• Very good results obtained also for pH  (correlation about 0.80)  
• Good results for chemical components and organic matter (about 0.7)  
 
Comparison linear regres sion – neural network  
For each data set and for each variable, we tested also linear regression. We found 
a good use of the linear model for clay but in general neural networks perform 
better for all the variables, as it is shown on figures 11 and 12.  
Not only do ANN models and linear regression models give similar results for 
clay content, but also ANN model becomes efficient for other variables not 
modeled by linear regression, such as CaO and MgO. The figure 12 presents how 
ANN models are better predicto rs than linear regression for all of the variables 
studied. 
 
 
 
 
 
 



Clay content, linear regression  Clay content, ANN model  
  

K20, linear regression  K2O, ANN model  

Organic Matter, linear regression  Organic Matter, ANN model  
 

Fig. 11: Comparison between linear regression and ANN models for clay, K 20 and organic 
matter prediction (Auzeville site, France).  
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Fig. 12: Comparison between linear regression and ANN models forall variables. Values 

are means over all sites.  
 
In red and purple are represented R values between predicted and real values for 
each variable with ANN models. In yellow and cyan blue are represented R 
values between predicted and real values for each variable with linear regression 
models. R values obtained wit h ANN models are quite better than those obtained 
with linear regression.  
 
An universal model ?  
The presented results have been obtained by computing a new predicting model 
on each field. Tests have been done on the potential of ANN models for 
predicting soil components on other fields than the one used for learning. In other 
words, can we build a model (learn and validate) on a well documented site and 
apply the found model over sites where no sampling points are available? 
Obtained results don’t justify t his hypothesis. The relationship between predicted 
and real values over one field with a model learned over another field illustrates 
this point (figure 13).   

Sand content Clay content  
 
 
 

Fig. 13: Accuracy of prediction for clay and sand contents over Calmont site with a 
model learned with Auzeville data.  
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Similar results have been found for all variables (text ure, chemical and physico -
chemical), and most field combinations. It seems then inadequate to consider a 
single model for all sites. Consequently, this method still require to collect soil 
samples over each field to build appropriate ANN models.  

Operational method 
Previous results show a good prediction of soil parameters using neural network 
models. However, the number of learning points was too important (13 per 
hectare) to be feasible with a low cost budget. We present then the first results of 
a methodology to make our method operational. The difficulty is to define the 
best way to acquire ground -sampling data for initializing the model (few but well 
located points). We propose the following scheme:  
 
- Process an unsupervised ISODATA classification on inp uts data with a pre -

defined number of classes,  

 
- Choose a sampling point in each of the detected classes. At the time being the 

point is chosen as more representative of the mean behavior of its class,  
- Build and learn the model on these points,  
- Predict soil characteristic values for each input point and build the 

corresponding map. 
 
We present, figure 14, the first 
obtained result: prediction of clay 
content at 90 cm depth using EMI 
data, surface spectral information 
and micro-topography (red points for 
learning, blue points for validation) 
and with only 4 learning points.   
The correlation coefficient is about 
0.7, which is a very valuable result. 
Work is currently made on the 
classification process, on the 
learning point selection and also on 
the model itself to improve the 
prediction accuracy. 

 
 

 

 
 

 
 
 
 
 

Fig. 45: Result obtained for clay content 
prediction with four le arning points.  
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CONCLUSION 
 
This paper presents an innovative method for predicting field soil properties: 
variability and numerical values of soil components (texture and chemical). We 
show in fact several improvemen ts for this. Artificial Neural Networks ANN 
models seem well adapted and more accurate than usual linear model; with good 
predictive ability for physical texture properties, some chemical components and 
pH. On the other hand, the study demonstrates the imp ortance of a multi sensor 
approach for the prediction: the innovative coupling process between GPS, EMI 
and radiometric data revealed to be very efficient. An important conclusion was 
the non-universality of the prediction models: it is necessary to comput e a model 
on each field to analyze. Consequently, we propose a methodology to make our 
method operational by reducing the number of learning points on each field. At 
the time being, our first results show that 4 sampling points per field seem to be 
efficient. Work with the learning points selection and the prediction model are 
currently carried in order to improve the accuracy. The proposed method is thus 
less destructive and more informative than the usual method based on grid 
sampling only as no “heroic” krigging methods are used.  
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