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ABSTRACT 
 

Predicting spatial variations of soil components of fer great promises in term of 
precision farming and decreased pressure to the environment. This paper outlines 
some results of a recent collaboration aimed at the development of non -
destructive methods to do this. The feasibility of coupling electromagneti c 
inductance (Geonics EM38©), GPS RTK and radiometric sensors to predict soil 
parameters (chemical, physical) variability was investigated. Simultaneous 
measurements of radiometric, GPS RTK, and EM38 sensors have been taken over 
different fields characterized by different soil properties and climatologic 
conditions, and for which soil samplings were available. Linear predictive models 
have been fitted on calibration data and applied on validation data in order to test 
accuracy of predictions. Also, a compar ative study between electromagnetic 
inductance and electrical resistance has been made in order to validate EM38 
sensor data. This study allowed different conclusions:  
§ MUCEP and EM38 give similar results on the variability mapping for one of 
the two test fields. On the second field, very dry soil conditions probably 
explained the poor MUCEP results (difficulty to measure very low resistance with 
that sensor). On the contrary, EM38 keeps a good sensitivity and remains well 
adapted for mapping variability ev en in dry conditions  
§ The innovative coupling process between GPS, EMI and radiometric data 
revealed to be very efficient and improved the overall prediction.  Better results 
for prediction have been found for clay than for other components (such as pH 
and MgO). Correlation coefficients between predicted and real test data vary 
between 0.7 and 0.9.   
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INTRODUCTION 
 
In Precision farming mnagement mode, it has been ascertain that spatial 
variability of soil parameters is key to sound management decisions.. Producing 
accurate maps from soil sampling usually require intense field measurements and 
scouting, thus rarely cost –effective . Several papers d eal with the variability 
mapping with non destructive methods: yield sensors [Layrol et al., 2000], remote 
sensing [Dicker et al., 1999] [Varvel et al., 1999], radar images [Moran et al., 
1999] or geophysical sensors [Dabas et al., 2000] [Nemdhal et al., 2 001] [Sudduth 
et al., 1999]. In this paper we propose a multi sensor approach to quantatively 
predict soils parameters. In this study, the feasibility of coupling an 
electromagnetic inductance EMI  sensor (Geonics EM38©), high precision GPS 
RTK and surface radiometric data to map field variability is investigated. Also, in 
order to validate the quality of the EM38 EMI sensor, a comparison study has 
been made with other geophysical sensors like MUCEP© and portable electrical 
resistance sensors.  
 
The paper is divided into two main parts. The first part presents briefly the 
experiment sites and materials. The second part focuses on results and their 
interpretation (first, the validation of EM38 EMI data by comparison with 
MUCEP and portable electrode data; then,  experimental results of predictive 
models). Finally, a conclusion is given.  
 
 

MATERIALS AND METHOD  
 
The field trials were conducted at several locations in France and Spain and for 
different kind of soil: clayey, silt -laden, sandy. The different experime nt fields are 
illustrated and briefly described on figure 1 (general characteristics and nature of 
the collected data on the site). For each field, EMI, GPS RTK, spectral image and 
soil sampling have been collected. Additionally, MUCEP and portable electro de 
measurements have be done for some fields as mentioned on figure 1.  
 
1 Gaillac : limestone, various 
texture.   
2 Ondes : sandy and/or clayey 
alluvium + MUCEP 
3 Auzeville : clay and limestone, 
deep soil 
4 Baziège : clay and limestone, deep 
soil 
5 Calmont : stony soil, alluvium. + 
portable electrodes  
6 Bellvis : clay and limestone, not 
stony 
7  Vallmanya : clay and limestone, 
stony + MUCEP 
 

 

Fig. 1 : Overview of sites location.  



    

Sites were selected over different soil types as indicated in Fig.1 and data 
were gathered early in the growing  season, on bare soil prior to planting in 
early April 2001. EM38 and GPS are mounted on 2x4 quad (see Fig. 2a) and a 
digital camera was set on a Unmanned Aerial Vehicle UAV (radio controlled) 
(see Fig. 2b).  
 

 
 
Fig. 2 : EMI EM38 sensor mounted on a 2x4 quad (fig. 2a) and UAV (radio controlled) 

used for taking spectral images of the fields (fig 2b).  
 
- EMI measurements were continuously taken at two depths (75 cm, 150 

cm) with a 5 meters grid sampling, with the EM38 sensor developed by 
Geonics.  

- MUCEP data were collected and delivered by Geocarta. MUCEP 
measures continuously resistance at 3 depths: 50, 100 and 150 cm.  

- Portable electrodes have been used for measuring electrical resistance at 7 
depths (10, 20, 30, 45, 65, 80 et 105cm).  

- A digital camera was mou nted on an UAV. The UAV was piloted with the 
help of a navigation software, based on video parameters and GPS 
location transmissions on a digital map (see Fig 3). This software has been 
developed by GEOSYS.  

 
 

Fig. 3 : View of the help UAV navigation softw are developed by Geosys . 
 
- Topography of each site has been done in collaboration with Toposat. A 

Real Time Kinematic RTK GPS receiver with a less than 1 cm accuracy 
for X(latitude) , Y (longitude) and Z (elevation)  



    

- A grid soil sampling over the field was a lso performed with a density of 
13 points per hectare at two depths (10 -30cm, 60-80cm). 

 
Based on these data sets, we investigated the possibilities to predict soil 
properties (physical, chemical, and physico -chemical). A fist step has been to 
georeference all data set into a common geographical system. Then, the aim of 
the study was to define which kind of inputs give the best prediction for the 
output parameters: texture components, organic matter, chemical 
components.… as summarized in figure 3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

RESULTS 

Comparative study of sensors  
EMI was measured with EM38 sensor. On particular fields, we added 
resistance measurements (MUCEP or handy electrodes) for:  
- cross validation of EM38,  
- cost/quality comparison between sensors for furt her studies.  
Resistance and electromagnetic inductance are two inverses phenomenon. 
Consequently, we aim to find inverse relation f(x)=1/x  between these two 
data sets. MUCEP continuously measures resistance at 3 depths: 50, 100 and 
150 cm. EM38 continuou sly measures conductivity at 2 depths: 75 and 150 
cm. Finally, point resistance has been measured with portable electrodes at 7 
depths (10, 20, 30, 45, 65, 80 et 105cm). We studied 3 cases:  
- EM38 (75cm depth)  vs. MUCEP (R1 50cm depth)  
- EM38 (75cm depth)  vs. MUCEP (R1 100cm depth)  
- EM38 (75cm depth)  vs. Point resistance (80cm depth)  
 
EMI vs. handed ponctual resistance  
Figure 4 displays obtained results on the Calmont site. We represent there the 
relationship between EM38 data and resistance portable data.  
 
 

Fig. 3 : Scheme of the study. 
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Fig. 4 : Relationship between EMI EM38 data and portable resistance electrode data, 

Calmont site.  
 
Observed relations have for equations: (Y for handed resistance data, X for 
EMI data) 
Calmont, parcel A: Y= -55.62+1288.45 1/X  R=0.88 
Calmont, parce l B: Y=  -55.85+1780.68 1/X R=0.80 
The high R correlations are coherent with the expected inverses behaviors of 
these two sensors. This result is a first validation of the EMI data.  
 
EMI vs MUCEP 
Figure 5 displays obtained results on the Ondes and Vallman ya sites. We 
represent there the relationship between EM38 data and resistance MUCEP 
data. Histograms of the values are also given for each kind of data.  
 

  
 

  



    

 

  
 
Fig. 5 : Relationships between EM38 EMI data and MUCEP resistance data , on two 

sites, with histograms of data values.  
 
Observed relations have for equations: (Y for MUCEP resistance data, X for 
EMI data) 
Ondes, parcelle A : Y= -6.02+492,95 1/X R=0.89 
Ondes, parcelle B : Y=  3.97+118,23 1/X R=0.64 
The high R correlations validate the i nverse behaviors of these two sensors. 
We can also infer of second validation of EMI data from this result. We also 
note the bimodal character of EMI data on parcel B, which illustrates an 
important within-field variability not detected with MUCEP data.  
It is easy to see that obtained results are very bad for Vallmanya field: no 
inverse relation, and no dynamic in MUCEP data as depicted on the 
histogram. An explanation can be the extreme dryness of the field. MUCEP 
sensor does not appear to be well adapted for measuring low resistance values, 
as related by Geocarta who made the experiment over Vallmanya. On the 
contrary, EM38 keeps a good sensitivity (illustrated by the good dynamic of 
the histogram) and remains well adapted for mapping variability . This can be 
explained by the fact that EM38 doesn’t have any contact with the surface, 
contrary to resistance electrodes.  
These two comparative studies between EMI EM38 data and both types of 
resistance data confirm the quality of the data acquired with the EM38 s ensor 
mounted on a 2x4 quad. Also our experiments showed a good sensitivity of 
the EM38 sensor in difficult conditions.  

Results of prediction  
According to our methodology summarized on fig. 2, we have built a linear 
predictive model between input data (EMI , GPS RTK and spectral data) and 
output data (soil components). Models were defined on 2/3 of data set and 
validation is applied on the remaining 1/3 data. These data sets (learning and 
validation) were randomly generated. Fig 6 displays, the accuracy of 
prediction for clay content over the Auzeville site with 4 different 
configurations of input data (learning data set is in red, validation data set is in 
blue). The figure presents:  
- correlation R values between predicted and observed data  
- best linear fit equations between predicted and observed values.  



    

 

  

Input : EMI  Input : EMI and topography . 

  

Input : EMI and spectral image  Input : EMI, spectral image and topography.  
 

Fig. 6 : Relationships between predicted and real values of clay conte nt over Auzeville 
site,with four input data configurations.  

Every correlation between observed parameters and predicted data were 
computed and are compiled in the following chart.. Figure 7 displays the 
evolution of R-values of all variables (mean over al l sites) for four different 
input data configurations.  
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Figure 7 : R-values between predicted and observed values for the validation data set 

of all variables and four input data configuration (30cm depth, mean over all sites)  
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Figure 7 indicates that the innovative coupling process between GPS, EMI 
and radiometric data revealed to be very efficient and improves the prediction 
for several variables. In particular, prediction of pH improves from 0.4 to 
around 0.75. Prediction remains inefficient for orga nic matter or limestone. 
For these variables, linear predictive models are not useful, and more complex 
models should be investigated, such as neural networks.  
These prediction models will be used for generating pedological variability 
maps with the same high spatial resolution as EMI, GPS RTK and spectral 
data.  Figure 8 displays a first obtained result over a parcel (predicted clay 
content at 30cm depth from EMI, GPS RTK and spectral data).  

 
Figure 8 : Example of predicted clay content over a field (Auz eville site, France). 

Inputs of the model are EMI, GPS RTK and spectral data.  
 

 
CONCLUSION 

 
 
This paper presents a multi sensor approach for characterizing in -field 
variability. Linear predictive models of soil properties (texture, chemical, 
physicochemical) were fit on calibration data and applied on validation data in 
order to test accuracy of predictions. In addition, a comparative study has been 
made by varying the number of inputs for each model. This study 
revealed that the innovative coupling process  between GPS, EMI and 
radiometric data is very efficient and improves the prediction compared to 
predictions solely based on one type of data. Better results for prediction were 
achieved for clay than for other components (such as pH and MgO). However, 



    

it is worth noting that correlation coefficients between predicted and real test 
data vary from 0.7 to 0.9.   
Also, a comparative study has been made for cross validating the EMI data 
with resistance sensors. MUCEP and EM38 give similar results for one of the  
two test fields. On the second field, very dry soil conditions probably 
explained the poor MUCEP results (difficult to measure very low resistance 
with that sensor). On the contrary, EM38 keeps a good sensitivity and remains 
well adapted for mapping varia bility even in dry conditions.  
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